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Abstract: ADME/Tox computational screening is one of the most hot topics of modern drug research. About
one half of the potential drug candidates fail because of poor ADME/Tox properties. Since the experimental
determination of water solubility is time-consuming also, reliable computational predictions are needed for
the pre-selection of acceptable "drug-like" compounds from diverse combinatorial libraries. Recently many
successful attempts were made for predicting water solubility of compounds. A comprehensive review of
previously developed water solubility calculation methods is presented here, followed by the description of
the solubility prediction method designed and used in our laboratory. We have selected carefully 1381
compounds from scientific publications in a unified database and used this dataset in the calculations. The
externally validated models were based on calculated descriptors only. The aim of model optimization was to
improve repeated evaluations statistics of the predictions and effective descriptor scoring functions were used
to facilitate quick generation of multiple linear regression analysis (MLR), partial least squares method (PLS)
and artificial neural network (ANN) models with optimal predicting ability. Standard error of prediction of the
best model generated with ANN (with 39-7-1 network structure) was 0.72 in logS units while the cross
validated squared correlation coefficient (Q2) was better than 0.85. These values give a good chance for
successful pre-selection of screening compounds from virtual libraries, based on the predicted water
solubility.
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INTRODUCTION

Acceptable drug absorption highly depends on aqueous
solubility [1]. ADME/Tox computational screening is one of
the most hot topics of modern drug research because even a
rough experimental determination of water solubility
requires one magnitude greater amounts of substances than
the biological assays. Nowadays 400 µg material is enough
for about 30 HTS assays while water solubility
determination in a single experiment needs milligrams of the
given compound. Since the experimental procedure is time-
consuming also, reliable computational predictions are
needed for the preselection of acceptable "drug-like"
compounds from diverse combinatorial libraries.

Aqueous solubility (S, [mol/l]) represents the maximum
amount of solute in moles that dissolves in 1 liter of water
to make a saturated solution at a given temperature. The
model presented below is based on the solubility data of the
unionized molecular species.
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Recently many successful attempts were made for
predicting water solubility of compounds (Tables 1-3).
Numerous, different approaches used for the prediction of
solubility have been summarized by Yalkowsky and
Banerjee [2] and divided into three groups:

a) correlations with experimentally determined physico-
chemical properties such as logP, melting point, boiling
point, chromatographic retention data, molar volume,
etc.;

b) correlations based on group contributions;

c) correlations with parameters calculated solely from the
molecular structure (QSPR approaches).

Representative examples for group a), b) and c) are
presented in Tables 1, 2 and 3, respectively.

The “correlations with experimentally determined
physico-chemical properties”- type methods give the best
results (especially for a series of molecules) because they are
based on experimentally determined data. But, because of
the same reasons they can not be used for in-silico screening.
The group-contribution methods are rather empirical and less
accurate. These methods may have difficulties with
“unknown” fragments that are not implemented in their
database. QSPR approaches are the best tools for in-silico
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Table 1. Correlations with Experimentally Determined Physico-Chemical Properties

Authors Compound data logS range in dataset Descriptors Model statistics

Yalkowsky and Valvani [3] 167 organic compounds 9 orders of magnitude melting point, logP, entropy of fusion aaea=0.5

Ran et al. [4] 21 organic compounds -8.08->0.39 melting point, logP aae=0.53
rmseb=0.72

Ran et al. [5] 1026 organic compounds -12.95->1.58 melting point, logP aae=0.38
rmse=0.53

Isnard and Lambert [6] 300 structurally diverse
compounds

- melting point, logP sdc=0.466 for liquids
sd=0.582 for solids

Warne et al. [7] 16 compounds -5.1->-1.6 melting point, ASEDd aae=64%

Miller et al. [8] 12 chlorobenzenes - boiling point aae=7.16%

Yaw et al. [9] 26 liquid alkanes - boiling point aae=0.05 (1.04%)
sd=0.05 (1.1%)

Ruelle and Kesselring [10] 531 heterogeneous compounds -12.79->0.51 melting point, molar volume, additional term
accounting for solvation effects

aae=0.371

a average absolute error, b root-mean-square error, c standard deviation, d approximate sigma electron density term

Table 2. Correlations Based on Group Contributions

Authors Compound data logS range in dataset Fragments Model statistics

Wakita et al. [11] 314 aliphatic and aromatic liquids -5.24->0.68 40 fragment terms derived from liquids, 2 fragment
terms derived from aliphatic solids, 5 fragment terms

derived from aromatic solids and melting point
correction factors

aae=0.25
sd=0.20

aliphatic solids -0.01->0.17 sd=0.151

134 aromatic solids -10.49->0.34 aae=0.58
sd=0.65

Suzuki [12] 497 compounds -10.49->1.96 10 individual atom type fragments aae=0.39
sd=0.505

Klopman et al. [13] 496 organic compounds - 45 fragments and 1 constant sd=1.43

Klopman and Zhu [14] 1288 organic compounds - 118 parameters sd=0.79

Kühne et al. [15] 694 organic compounds -11.62->1.81 55 fragments, 2 melting point terms aae=0.38

prediction of huge databases because QSPR methods are
based on descriptors calculated from the molecular structure
only. The accuracy of any type of prediction can never be
expected higher than the accuracy of the experimental
determination.

In this study we set as an aim to measure the predictive
ability of models obtained by multiple linear regression
(MLR) analysis, partial least squares (PLS) method and
artificial neural network (ANN). We have selected carefully
1381 compounds from scientific publications [4, 23, 25, 27-
29, 34], stored in a unified database and used the same
dataset in the three types of calculations. In these
publications the authors presented good quality predictions
of aqueous solubility, all of them used reliable, validated
data. The database contains aqueous solubility data for a
range of –10.80 to 2.06 logS. All the data found was used
in the calculations including numerous outliers published in
the literature.

The standard error of prediction of the best model,
generated with ANN, was 0.72 in logS units while the cross
validated squared correlation coefficient (Q2) was better than

0.85. These values give a good chance for successful pre-
selection of compounds from virtual libraries, based on the
predicted water solubility.

Since about one half of the potential drug candidates fail
because of poor ADME/Tox properties, it is advantageous to
use property based design in the very early stage of drug
research, which can tend to decrease development costs. It
has been shown that QSPR models, generated by our
statistical methods, can reliably estimate the inherent error of
the physico-chemical data and in this way they can be used
as automatic quality assurance tools for controlling the
experimental procedure as well.

MATERIALS AND METHODS

The database of 1381 molecules was built in ISISBase
[43] on an IBM Pentium PC. We calculated the 3D
structures of the molecules by the CONCORD algorithm of
the Tripos software package [44]. A structure definition file
(sdf) containing the chemical structures and experimental
logS values of the molecules was created and imported into
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Table 3. Correlations with Parameters Calculated Solely from the Molecular Structure

Authors Compound data logS range in
dataset

Descriptors Model data Model statistics

Medir and Giralt
[16]

84 hydrocarbons - zero-order molecular connectivity
index, dipole moment, number of

carbon atoms, acentric factor

MLR (inverse of
solubility was
calculated)

sd=0.18-1.26

Nirmalakhandan
and Speece [17]

145 compounds - zero-order valence molecular
connectivity index, polarizability

parameter

MLR sd=0.311

Nirmalakhandan
and Speece [18]

325 compounds -9.32->-3.03 zero-order valence molecular
connectivity index, modified

polarizability parameter

MLR sd=0.33

Patil [19] 71 PCBs - first-order valence molecular
connectivity index

MLR aae=0.45 (9.4%)

Makino [20] 136 PCB congener -10.32->-5.33 6 descriptors MLR aae=0.1681

sd=0.225

Huibers and
Katritzky [21]

109 hydrocarbons
and 132

halogenated
hydrocarbons

-10.41->0.51 topological and charge descriptors MLR sea=0.386

Katritzky et al. [22] 411 compounds -6.44->1.57 6 descriptors MLR se=0.573

Huuskonen et al.
[23]

211 drugs (51 in test
set)

-5.82->0.54 topological indices ANN

(23-5-1)

r2=0.86

s=0.53, for the test set

Sutter and Jurs [24] diverse set of 140
compounds

-10.83->0.28 electrical, topological, geometrical
descriptors

ANN

(9-3-1)

rmse=0.222 for the
prediction set

Mitchell and Jurs
[25]

332 organic
compounds

-12.8->1.57 topological, geometric, electronic
descriptors

MLR rmse=0.556 for the
prediction set

ANN

(9-6-1)

rmse=0.343 for the
prediction set

Engkvist and Wrede
[26]

3658 molecules
(307 in independent

validation test)

- 1D+2D descriptors ANN

(63-5-1)

r2=0.86

sd=0.80 for the
independent validation

set

McElroy and Jurs
[27]

176 compounds (22
in prediction set)

-7.41->0.96 topological, geometric, electronic,
“hybrid” descriptors

MLR r2=0.80

rmse=0.661 for the
prediction set

ANN r2=0.57

rmse=1.555 for the
prediction set

223 compounds (28
in prediction set)

-8.77->1.57 MLR r2=0.62

rmse=1.233 for the
prediction set

ANN r2=0.79

rmse=0.644 for the
prediction set

399 compounds (51
in prediction set)

-8.77->1.57 MLR r2=0.56

rmse=1.490 for the
prediction set

ANN r2=0.56

rmse=1.234 for the
prediction set

an in-house developed computer program, 3DNET [45]. The
software can calculate various, user defined 1D, 2D and 3D
molecular descriptors. The externally validated models were
based on calculated descriptors only. The starting descriptor
pool is listed in Table 4.

The descriptor calculation resulted a data file, which
contained the descriptors and the experimental logS data for

each molecule. This data file was fed into the statistical
program 3DNET4W [64]. This program was designed for the
automatic selection of the descriptors needed for the optimal
structure-property (or structure-biological activity) model.

The database was divided into three main parts:

1. Work set of 1050 molecules was used in model building.
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(Table 3). contd.....

Authors Compound data logS range in
dataset

Descriptors Model data Model statistics

McFarland [28] 22 drugs or drug-like
molecules

-6.17->-1.38 partial atomic charges, hydrogen
bond factors + calculated logP

MLR r2=0.82

Q2=0.64

s=0.70

partial atomic charges, hydrogen
bond factors + measured logP

MLR r2=0.88

Q2=0.83

s=0.58

Yaffe et al. [29] 515 organic
compounds

-11.62->4.31 PM3 and topological descriptors ANN sd=0.26

Fuzzy ARTMAP
method

sd=0.16

Liu and So [30] 1312 organic
compounds

(21 in prediction set)

-11.62->1.58 1D+2D descriptors ANN r=0.89

s=0.91

Yin et al. [31] 71 aromatic sulfur-
containing

carboxylates

-6.24->-0.70 quantum chemical semi-empirical
descriptors

MLR r2
CV=0.9095

PRESSb=13.1768

Jorgensen and Duffy
[32]

150 organic solutes -10.8->2.06 obtained from Monte Carlo
simulations

MLR r2=0.88

Q2=0.87

rmse=0.72

Collette [33] 40 diverse organic
esters

- infrared spectral data and
interferogram based desc.

PLS r2=0.928

rmse=0.395

Huuskonen [34] 1297 organic
compounds (413 in test

set)

-11.62->1.58 Molecular connectivity, shape, and
atom-type E-state indices

ANN

(30-12-1)

r2=0.92

s=0.60

MLR r2=0.88

s=0.71

Chen et al. [35] 321 drugs or related
compounds (54 in

testing set)

-8.80->1.70 Electronic, geometric, topological
descriptors

MLR r=0.84

rmse=0.86

Bergström et al. [36] 17 structurally diverse
drugs

~9 orders of
magnitude

lipophilicity, partitioned molecular
surface areas

MLR r2(tr)=0.91

rmse(tr)=0.61

Delgado [37] 50 chlorinated
hydrocarbons

-10->-1 2 theoretical molecular descriptors MLR r2=0.96

se=0.45

Jorgensen and Duffy
[38]

337 compounds (20 in
test set)

- obtained from Monte Carlo
simulations

MLR r2=0.95

rms=0.70 for the
test set

Huuskonen et al.
[39]

734 organic
compounds (21 in test

set)

~-12->~2.5 atom-type E-state indices MLR r2=0.80

s=0.87 for the test
set

ANN

(34-5-1)

r2=0.84

s=0.75 for the test
set

Wanchana et al. [40] 211 drugs or drug-like
compounds

-5.82->0.55 topological indices PLS q2=0.785

sepc=0.676

Abraham and Joelle
[41]

659 compounds (65 in
test set)

-9.02->1.97 6 descriptors MLR sd=0.50

Bruneau [42] 2494 compounds (934
in test set)

- topological, geometrical and
electronic descriptors

ANN
(16-8-1)

rmse=0.81

a  
standard error, 

b  
prediction residual error sum of squares, 

c  
standard error of prediction
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Table 4. Molecular Descriptors Used for Logs Calculation

Descriptors No. of descriptors Reference

Molecular mass 1

Molecular volume, solvent extended volume  2  [46, 47, 48]

Molecular surface, solvent accessible surface, solvent extended surface  3  [47, 48, 49]

Globularity  1  [50]

WHIM descriptors of atomic mass, position, electronegativity, localized charge, atomic polarizability
contribution, atomic electro topological index, pi functionality. Moments and T A V K combinations

were used

7x7=49 [51]

Polarizability 1 [52, 53]

Dipole moment 1 [54]

Hildebrand solubility parameter 1 [55]

Unsaturation number 1

Degree of chemical bond rotational freedom 1 [56]

Wiener index 1 [57]

Randic index 1 [58]

HDSA1, HDSA2, HASA1, HASA2 hydrogen bond (HB) descriptors 4 [59]

Gravitational index 1 [59]

Topological electronic index 1 [59]

QN, QO, QNO, QTOT Bodor charge descriptors for logP 4 [60]

Min, max and average of electrostatic potential (ESP) on the vdw surface 3 [52]

Min, max and average of molecular lipophilicity potential (MLP) 3 [61]

Number of specified atom types 38 [53]

Electrostatic HB basicity and acidity, max. plus summed values 4 [62]

Calculated logP by 3DNET4W 1 [63]

Table 5. Descriptors that Proved to be Important in Each
Model for Explaining Experimental Solubility
Data

Calculated logP by 3DNET4W [63]

Globularity [50]

Degree of chemical bond rotational freedom [56]

Unsaturation number

Hildebrand solubility parameter [55]

Electrostatic HB (hydrogen bond) basicity, max. plus summed values [62]

Electrostatic HB acidity (hydrogen bond) [62]

Topological electronic index [59]

QN, QTOT Bodor charge descriptors for logP [60]

WHIM descriptor of atomic mass, A combination [51]

Number of OH groups, number of oxygen and number of aromatic
oxygen atoms [53]

2. External validation set of 250 molecules validated the
optimized models at the end of the optimization
processes.

3. Final external validation set of 81 molecules used as a
further control of the reliability of the best obtained
models.
We used the uniform distribution method for the creation

of work set and external validation set in order to get
homogenously distributed subsets in the n-dimensional
space of the n, user defined, molecular descriptors [65].

In the cyclic-iterative model optimization process, the
work set (1) has been randomly, repeatedly split into two
halves:

- a) training set: containing molecules used in the actual
model building,

 - b) monitoring set: was used to control the predictive
ability of the actual model.

According to our previous studies [63], applying the
split-half method five times, gave reliable models and
optimal calculation speed.

Variable subset selection (VSS) was performed with
genetic algorithm (GA) or sequential selection algorithms
(SSA). The aim of the optimization was to improve repeated
evaluations statistics (Q2) of the predictions and effective
descriptor scoring functions were used to facilitate quick
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Table 6. Average Q2 and SEP Values of the Optimized Models for the External Validation Sets

Model type MLR PLS ANN

Optimized by: SSA GA SSA GA SSA(MLR) GA(MLR) SSA(PLS) GA(PLS)

Q2 0.89 0.91 0.88 0.91 0.93 0.94 0.93 0.93

SEP 0.92 0.78 0.95 0.80 0.71 0.69 0.71 0.73

Number of
descriptors

55 39 54 50 55 39 54 50

Model data - - 40 components 38 components 5 hidden neurons 7 hidden
neurons

4 hidden neurons2 hidden neurons

Fig. (1). Work set fit of the best ANN model.

generation of MLR, PLS models with optimal predictive
ability. The model optimizations were stopped when any
change in the descriptor set of the given model decreased the
average Q2 of the five cross validations for that model. The
obtained models were recalculated with ANN using the work
set (1) as a learning set, and the external validation set (2)
as a test set. We used feed-forward networks with back-
propagation learning method in the calculations.
Continuously decreasing learning rate was used during the
training, momentum term was not used. Network
architectures with 1 to 8 hidden neurons were checked.
Finally the models were “trained” on the 1300 work set and
external validation set molecules (1+2) and were applied for

the prediction of the logS values for the 81, "never seen
before", final external validation set (3) molecules.

RESULTS

The descriptors that turned to be present in each final
model are listed in Table 5. Each optimal model contains
other descriptors as well, but the former are the most
important ones in each model. The Q2 and the standard error
of prediction (SEP) values for the cross validations are listed
in Table 6, the best model is highlighted. The Q2 and the
SEP values for the final external validation set molecules
are listed in Table 7. The work set fit and the final external
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Table 7. Validation of the Optimized Models with the 81 Molecules of the Final External Validation Set

Model type MLR PLS ANN

Optimized by SSA GA SSA GA SSA(MLR) GA(MLR) SSA(PLS) GA(PLS)

Q2 0.80 0.83 0.81 0.82 0.86 0.86 0.85 0.85

SEP 0.83 0.78 0.81 0.81 0.70 0.72 0.73 0.71

Fig. (2). Results of the final external validation set prediction.

validation set prediction of the best model (where the
starting descriptor set of the ANN model was pre-selected by
the MLR method based model, applying GA) are plotted in
Fig. (1) and Fig. (2).

The final ANN model used 7 hidden neurons. To
compare the best ANN model to another logS prediction
method we calculated the logS values of the same 81
molecules in the final external validation set with a reliable
computer program ALOGPS 2.1, accessible via internet [66]
(see Appendix for details). ALOGPS 2.1 uses the molecular
weight and electrotopological E-state indices to estimate
aqueous solubility by Artificial Neural Networks. This
neural network with 33-4-1 neurons provided results with
Q2=0.83 and SEP=0.83. The results show that 3DNET is
slightly better than ALOGPS 2.1. It should be mentioned
that ALOGPS 2.1 uses only 1D and 2D descriptors to predict
logS.

SUMMARY

Due to the importance of solubility data in drug design,
various prediction methods have been developed:

a) correlations with experimentally determined physico-
chemical properties,

b) correlations based on group contributions,

c) correlations with parameters calculated solely from
the molecular structure.

Almost all of these methods meet the requirements they
were developed for. Many of the predictions can be
successfully applied for a particular compound family only.
A frequently asked question is the salt formation, because
none of the presently used programs can cope with this.
Really we can ignore this problem in the majority of cases
because salt formation, in general, increases water solubility
dramatically.
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Appendix Predicted and Experimental Water Solubility Data of the Final External Validation Set

No. Name logSexp logScalc
(ANN)

∆∆∆∆logS
(ANN)

logScalc
(ALOGPS)

∆∆∆∆logS
(ALOGPS)

1 m-Nitrobenzoic acid -1.68 -2.13 -0.45 -2.37 -0.69

2 Indole -1.21 -0.64 0.57 -1.35 -0.14

3 Phenobarbital -2.29 -2.99 -0.70 -2.91 -0.62

4 Tetrahydrofuran 0.49 -0.10 -0.59 -0.02 -0.51

5 Procaine -1.78 -2.55 -0.77 -1.53 0.25

6 Benzonitrile -1.00 -1.11 -0.11 -1.05 -0.05

7 Pyrene -6.18 -6.17 0.01 -6.95 -0.77

8 2-Amino-1-naphtalenesulfonic acid -1.70 -3.14 -1.44 -2.27 -0.57

9 9H-Carbazole -5.27 -2.84 2.43 -3.40 1.87

10 2,4-Dinitrotoluene -2.82 -2.20 0.62 -3.27 -0.45

11 4-Heptanone -1.30 -1.14 0.16 -1.40 -0.10

12 1,2-Diethoxy-ethane -0.77 -1.38 -0.61 -0.60 0.17

13 3,4-Dichloro-biphenyl -7.44 -5.58 1.86 -5.58 1.86

14 2,3,4'-PCB -6.26 -6.30 -0.04 -6.31 -0.05

15 1,1,2,2-Tetrachloroethane -1.74 -2.70 -0.96 -2.19 -0.45

16 1,3-Dimethylnaphthalene -4.29 -4.66 -0.37 -4.62 -0.33

17 1-Hexyne -2.36 -2.62 -0.26 -2.71 -0.35

18 1-Methylbenz[a]anthracene -6.64 -7.28 -0.64 -7.96 -1.32

19 2,3-Dimethylnaphthalene -4.72 -4.72 0.00 -4.58 0.14

20 2,4-Dimethylpentane -4.26 -3.63 0.63 -3.60 0.66

21 2,6-Dichloro-1,1'-biphenyl -5.21 -5.41 -0.20 -5.66 -0.45

22 2-Chloro-1,1,1-trifluoroethane -1.15 -2.23 -1.08 -0.83 0.32

23 2-Chloro-1-nitrobenzene -2.55 -2.24 0.31 -2.83 -0.28

24 2-Iodopropane -2.09 -2.71 -0.62 -1.97 0.12

25 2-Nonanone -2.57 -3.17 -0.60 -2.89 -0.32

26 3-Hexyne -1.99 -2.72 -0.73 -2.20 -0.21

27 3-Methylheptane -5.16 -4.10 1.06 -4.40 0.76

28 3-Methylthiophene -2.39 -2.19 0.20 -1.97 0.42

29 Anthracene -6.35 -5.57 0.78 -5.57 0.78

30 Benzo[e]pyrene -7.60 -7.84 -0.24 -8.36 -0.76

31 Butyraldehyde -0.01 -0.10 -0.09 -0.13 -0.12

32 Decanal -3.41 -4.05 -0.64 -4.29 -0.88

33 Hexabromobenzene -9.74 -7.51 2.23 -6.31 3.43

34 Hexachloro-1,3-butadiene -4.92 -4.90 0.02 -5.61 -0.69

35 Isobutyl formate -1.00 -0.38 0.62 -0.61 0.39

36 Isobutyl methyl ether -0.90 -1.04 -0.14 -0.76 0.14

37 n-Butyl propionate -1.94 -1.64 0.30 -1.61 0.33

38 n-Heptane -4.53 -3.85 0.68 -3.98 0.55
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(Appendix). contd.....

No. Name logSexp logScalc
(ANN)

∆∆∆∆logS
(ANN)

logScalc
(ALOGPS)

∆∆∆∆logS
(ALOGPS)

39 n-Hexylbenzene -5.21 -5.48 -0.27 -5.22 -0.01

40 N,N-Dimethyl formamide 1.14 1.19 0.05 1.02 -0.12

41 p-Xylene -2.82 -3.19 -0.37 -2.73 0.09

42 Trichlorofluoromethane -2.10 -1.58 0.52 -1.75 0.35

43 Pentobarbital -2.52 -2.73 -0.21 -2.42 0.10

44 1H-Isoindole-1,3(2H)-dione -2.61 -1.91 0.70 -1.58 1.03

45 2,5-Pyridinedicarboxylicacid -2.13 -1.37 0.76 -1.70 0.43

46 2,2'-Biquinoline -5.40 -6.51 -1.11 -5.02 0.38

47 2-Methyl-2-propenenitrile -0.42 -0.29 0.13 -0.47 -0.05

48 2-Phenyl-4-carboxyquinoline -3.19 -3.81 -0.62 -3.85 -0.66

49 N'-(3,4-dichlorophenyl)-N-methoxy-N-methyl urea -3.52 -3.70 -0.18 -3.41 0.11

50 2,4-Pyridinedicarboxylic acid -1.83 -1.45 0.38 -1.67 0.16

51 1-Nitropentane -1.95 -1.33 0.62 -1.66 0.29

52 (3-i-Propyl-5-methyl)-phenyl-N-methyl carbamate -3.35 -2.63 0.72 -3.13 0.22

53 3-Hydroxy-5-methylisoxazole -0.07 0.19 0.26 -0.36 -0.29

54 1-Methyl-1-phenylethyl hydroperoxide -1.04 -2.27 -1.23 -2.04 -1.00

55 Tetrahydro-2H-pyran -0.03 -0.56 -0.53 -0.34 -0.31

56 2-Butenoic acid 0.00 0.13 0.13 0.12 0.12

57 Malathion -3.36 -4.25 -0.89 -3.30 0.06

58 Phenolphthalein -2.90 -4.11 -1.21 -4.48 -1.58

59 1-Anthranol -4.73 -3.52 1.21 -4.45 0.28

60 Bibenzyl -4.62 -5.62 -1.00 -5.17 -0.55

61 Gallic acid -1.16 -1.02 0.14 -1.54 -0.38

62 Isopentanol -0.52 -0.30 0.22 -0.34 0.18

63 Monolinuron -2.57 -3.06 -0.49 -2.68 -0.11

64 o-Chlorobenzoic acid -1.89 -1.80 0.09 -2.45 -0.56

65 Phthalic anhydride -1.39 -1.02 0.37 -1.47 -0.08

66 Sulfamethazine -2.27 -2.90 -0.63 -3.07 -0.8

67 Tubercidin -1.95 -2.01 -0.06 -1.20 0.75

68 1,1,3-Trimethyl cyclohexane -4.85 -4.66 0.19 -4.57 0.28

69 Diallate -4.08 -4.34 -0.26 -4.00 0.08

70 Ethiofencarb -2.09 -2.65 -0.56 -3.09 -1.00

71 6-Chlorpteridine -1.12 -1.72 -0.60 -0.90 0.22

72 4-Hydroxypteridine -1.47 -2.16 -0.69 -1.19 0.28

73 Alclofenac -3.13 -2.89 0.24 -2.89 0.24

74 Deoxycorticosterone acetate -4.63 -5.12 -0.49 -4.88 -0.25

75 5,5-Di-isopropyl barbiturate -2.77 -2.15 0.62 -2.22 0.55

76 5-Ethyl-5-octyl barbiturate -3.94 -3.80 0.14 -3.71 0.23
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(Appendix). contd.....

No. Name logSexp logScalc
(ANN)

∆∆∆∆logS
(ANN)

logScalc
(ALOGPS)

∆∆∆∆logS
(ALOGPS)

77 2,6-Dimethylaniline -1.17 -1.01 0.16 -1.36 -0.19

78 2-Chlorotoluene -2.53 -2.63 -0.10 -2.91 -0.38

79 Methane -2.82 -1.79 1.03 0.85 3.67

80 Triethylamine -0.14 0.08 0.22 0.11 0.25

81 Isoguanine -3.40 -2.97 0.43 -1.35 2.05

In this article we have summarized the most important
methods used to predict the aqueous solubility of drug-like
compounds followed by a presentation of our solubility
calculating method(s). We have built a model showing
satisfactory predictive power, comparable to the ones
published in the literature. We have used a chemically
diverse set of compounds in model generation, which
resulted in good generalization ability. This feature is
extremely important in virtual screening of large, structurally
diverse compound libraries.

The calculation of all descriptors for 1000 molecules
takes about 30 minutes while the prediction of solubility
data of the compounds takes only seconds with our method.

ABBREVIATIONS

QSPR = Quantitative Structure-Property 
Relationships

MLR = Multiple Linear Regression

PLS = Partial Least Squares method

ANN = Artificial Neural Network

ADME/Tox = Absorption, Distribution, Metabolism, 
Excretion, Toxicity related properties

HTS = High Throughput Screening

VSS = Variable Subset Selection

GA = Genetic Algorithm

SSA = Sequential Selection Algorithm

Q2 = Cross validated squared correlation 
coefficient

SEP = Standard Error of Prediction.
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